MODULE XCLSG2E CONTAINS * * ..File: xclg2e.f FL_G,PS * * * ..The one-loop and two-loop MS(bar) singlet coefficient functions * for the structure function F_L in e.m. DIS at mu_r = mu_f = Q. * The expansion parameter is alpha_s/(4 pi). * * ..The code uses the package of Gehrmann and Remiddi for the harmonic * polylogarithms published in hep-ph/0107173 = CPC 141 (2001) 296. * * ..The two-loop results were first derived in * J. Sanchez Guillen et al, Nucl. Phys. B353 (1991) 337 and * E.B. Zijlstra and W.L. van Neerven, Phys. Lett. B273 (1991) 476 * * ===================================================================== * * * ..The one-loop gluonic coefficient function * FUNCTION XLG1A (X, NF) IMPLICIT REAL*8 (A - Z) INTEGER NF * XLG1A = 8.* NF * X*(1.-X) * RETURN END FUNCTION * * --------------------------------------------------------------------- * * * ..The two-loop pure-singlet coefficient function * FUNCTION XLS2A (X, NF) * IMPLICIT REAL*8 (A - Z) COMPLEX*16 HC1, HC2, HC3, HC4, HC5 INTEGER NF, N1, N2, NW PARAMETER ( N1 = -1, N2 = 1, NW = 2 ) DIMENSION HC1(N1:N2),HC2(N1:N2,N1:N2),HC3(N1:N2,N1:N2,N1:N2), , HC4(N1:N2,N1:N2,N1:N2,N1:N2), , HC5(N1:N2,N1:N2,N1:N2,N1:N2,N1:N2) DIMENSION HR1(N1:N2),HR2(N1:N2,N1:N2),HR3(N1:N2,N1:N2,N1:N2), , HR4(N1:N2,N1:N2,N1:N2,N1:N2), , HR5(N1:N2,N1:N2,N1:N2,N1:N2,N1:N2) DIMENSION HI1(N1:N2),HI2(N1:N2,N1:N2),HI3(N1:N2,N1:N2,N1:N2), , HI4(N1:N2,N1:N2,N1:N2,N1:N2), , HI5(N1:N2,N1:N2,N1:N2,N1:N2,N1:N2) PARAMETER ( Z2 = 1.6449 34066 84822 64365 D0 ) * * ...Colour factors and abbreviations * CF = 4./3.D0 CA = 3.D0 * DX = 1.D0/X * * ...Harmonic polylogs (HPLs) up to weight NW=2 by Gehrmann and Remiddi * CALL HPLOG (X, NW, HC1,HC2,HC3,HC4, HR1,HR2,HR3,HR4, , HI1,HI2,HI3,HI4, N1, N2) * * ...The coefficient function in terms of the HPLs * clqps2 = & + nf*cf * ( 16.D0/3.D0 - 64.D0/3.D0*x + 160.D0/9.D0*x**2 - 16.D0 & /9.D0*dx - 16.D0*z2*x + 16.D0*Hr1(0) - 16.D0*Hr1(0)*x - 32.D0 & *Hr1(0)*x**2 + 16.D0*Hr1(1) - 32.D0/3.D0*Hr1(1)*x**2 - 16.D0/ & 3.D0*Hr1(1)*dx + 32.D0*Hr2(0,0)*x + 16.D0*Hr2(0,1)*x ) * XLS2A = CLQPS2 * RETURN END FUNCTION * * --------------------------------------------------------------------- * * * ..The two-loop gluonic coefficient function * FUNCTION XLG2A (X, NF) * IMPLICIT REAL*8 (A - Z) COMPLEX*16 HC1, HC2, HC3, HC4, HC5 INTEGER NF, N1, N2, NW PARAMETER ( N1 = -1, N2 = 1, NW = 2 ) DIMENSION HC1(N1:N2),HC2(N1:N2,N1:N2),HC3(N1:N2,N1:N2,N1:N2), , HC4(N1:N2,N1:N2,N1:N2,N1:N2), , HC5(N1:N2,N1:N2,N1:N2,N1:N2,N1:N2) DIMENSION HR1(N1:N2),HR2(N1:N2,N1:N2),HR3(N1:N2,N1:N2,N1:N2), , HR4(N1:N2,N1:N2,N1:N2,N1:N2), , HR5(N1:N2,N1:N2,N1:N2,N1:N2,N1:N2) DIMENSION HI1(N1:N2),HI2(N1:N2,N1:N2),HI3(N1:N2,N1:N2,N1:N2), , HI4(N1:N2,N1:N2,N1:N2,N1:N2), , HI5(N1:N2,N1:N2,N1:N2,N1:N2,N1:N2) PARAMETER ( Z2 = 1.6449 34066 84822 64365 D0 ) * * ...Colour factors and abbreviations * CF = 4./3.D0 CA = 3.D0 * DX = 1.D0/X * * ...Harmonic polylogs (HPLs) up to weight NW=2 by Gehrmann and Remiddi * CALL HPLOG (X, NW, HC1,HC2,HC3,HC4, HR1,HR2,HR3,HR4, , HI1,HI2,HI3,HI4, N1, N2) * * ...The coefficient function in terms of the HPLs * clgg2 = & + nf*ca * ( 16.D0/3.D0 + 272.D0/3.D0*x - 848.D0/9.D0*x**2 - 16.D & 0/9.D0*dx - 64.D0*z2*x + 32.D0*z2*x**2 + 16.D0*Hr1(0) + 128.D0 & *Hr1(0)*x - 208.D0*Hr1(0)*x**2 + 16.D0*Hr1(1) + 144.D0*Hr1(1) & *x - 464.D0/3.D0*Hr1(1)*x**2 - 16.D0/3.D0*Hr1(1)*dx + 32.D0* & Hr2(-1,0)*x + 32.D0*Hr2(-1,0)*x**2 + 96.D0*Hr2(0,0)*x + 96.D0 & *Hr2(0,1)*x - 32.D0*Hr2(0,1)*x**2 + 32.D0*Hr2(1,0)*x - 32.D0* & Hr2(1,0)*x**2 + 32.D0*Hr2(1,1)*x - 32.D0*Hr2(1,1)*x**2 ) clgg2 = CLgg2 + nf*cf * ( - 128.D0/15.D0 - 304.D0/5.D0*x + 336.D0 & /5.D0*x**2 + 32.D0/15.D0*dx + 16.D0/3.D0*z2*x + 64.D0/5.D0*z2 & *x**3 - 104.D0/15.D0*Hr1(0) - 208.D0/5.D0*Hr1(0)*x + 96.D0/5.D & 0*Hr1(0)*x**2 - 32.D0/15.D0*Hr1(0)*dx - 8.D0*Hr1(1) - 24.D0* & Hr1(1)*x + 32.D0*Hr1(1)*x**2 - 32.D0/3.D0*Hr2(-1,0)*x + 64.D0/ & 5.D0*Hr2(-1,0)*x**3 + 32.D0/15.D0*Hr2(-1,0)*dx**2 - 64.D0/3.D0 & *Hr2(0,0)*x - 64.D0/5.D0*Hr2(0,0)*x**3 - 16.D0*Hr2(0,1)*x ) * XLG2A = CLGG2 * RETURN END FUNCTION * * =================================================================av== END MODULE XCLSG2E