MODULE XCLNS3P USE XC2NS3P CONTAINS * * ..File: xclns3p.f FL_NS * * * ..Parametrization of the third-order MS(bar) non-singlet coefficient * functions for the structure function F_L in electromagnetic DIS. * mu_r = mu_f = Q. The expansion parameter is alpha_s/(4 pi). * * ..The distributions (in the mathematical sense) are given as in eq. * (B.26) of Floratos, Kounnas, Lacaze: Nucl. Phys. B192 (1981) 417. * The name-endings A, B, and C of the functions below correspond to * the kernel superscripts [2], [3], and [1] in that equation. * * ..The relative accuracy of these parametrizations, as well as of * the convolution results, is one part in thousand or better. * * ..Reference: S. Moch, J. Vermaseren and A. Vogt, * hep-ph/0411112 = Phys. Lett. B606 (2005) 123 * * ===================================================================== * * * ..This is the regular piece. The rational end-point coefficients are * exact, the rest has been fitted for x between 10^-6 and 1 - 10^-6. * The N_f^2 part is exact and requires the dilogarithm Li2(x). * FUNCTION CLNP3A (Y, DL, NF, CC) IMPLICIT REAL*8 (A - Z) COMPLEX*16 WGPLG INTEGER NF INTEGER CC ! charged current DIMENSION FL(6) DATA FL / -1.d0, 0.5d0, 0.d0, 0.5d0, 0.2d0, 0.5d0 / PARAMETER ( Z2 = 1.6449 34066 84822 64365 D0 ) * DL1 = DL1VAL(Y, DL) D81 = 1./81.D0 * FL11 = FL(NF) * CLNP3A = 0.D0 IF (CC.EQ.1) THEN CLNP3A = - 2220.5 - 7884.* Y + 4168.* Y**2 , - 1280.*D81 *DL**3 - 7456./27.D0 * DL**2 - 1355.7 * DL , + 512./27D0 * DL1**4 - 177.40 * DL1**3 + 650.6 *DL1**2 , - 2729.* DL1 + 208.3 * Y*DL**3 - DL1**3*(1.-Y)* (125.3 , - 195.6 *DL1) - DL*DL1 * (844.7 * DL + 517.3 * DL1) , + NF * ( 408.4 - 9.345 * Y - 919.3 * Y**2 , + 1728.*D81 * DL**2 + 200.73 * DL - 1792.*D81* Y*DL**3 , + 1024.*D81 * DL1**3 - 112.35 * DL1**2 + 344.1 * DL1 , + (1.-Y)*DL1**2 * (239.7 + 20.63 * DL1) , + DL*DL1 * (887.3 + 294.5 * DL - 59.14 * DL1) ) , + NF**2 * ( - 19. + (317./6.D0 - 12.*Z2) * Y , + 9.* Y*DL**2 + DL * (-6. + 50.* Y) , + 3.* Y*DL1**2 + DL1 * (6. - 25.* Y) , - 6.* Y*DL*DL1 + 6.* Y* LI2(Y) ) * 64.* D81 ELSE CLNP3A = FL11*NF * ( (107.0 + 321.05 * Y - 54.62 * Y**2) *(1.-Y) , - 26.717 - 320*D81 * DL**3 - 640.*D81 * DL**2 , + 9.773 * DL + Y*DL * (363.8 + 68.32 * DL) ) * Y ENDIF * RETURN END FUNCTION * * --------------------------------------------------------------------- * * * ..This is the 'local' piece, introduced to fine-tune the accuracy. * FUNCTION CLNP3C (Y, NF) IMPLICIT REAL*8 (A - Z) INTEGER NF * CLNP3C = 0.113 + NF * 0.006 * RETURN END FUNCTION * FD: This defines the dilogarithm function needed in CLNP3A. * Taken from cernroutines. FUNCTION LI2 (X) C IMPLICIT REAL* 8 (A - Z) C* C LI2 = DDILOG(Y) C C FUNCTION DDILOG(X) C C END FUNCTION C IMPLICIT DOUBLE PRECISION (A-H,O-Z) DIMENSION C(0:19) PARAMETER (Z1 = 1, HF = Z1/2) PARAMETER (PI = 3.14159 26535 89793 24D0) PARAMETER (PI3 = PI**2/3, PI6 = PI**2/6, PI12 = PI**2/12) DATA C( 0) / 0.42996 69356 08136 97D0/ DATA C( 1) / 0.40975 98753 30771 05D0/ DATA C( 2) /-0.01858 84366 50145 92D0/ DATA C( 3) / 0.00145 75108 40622 68D0/ DATA C( 4) /-0.00014 30418 44423 40D0/ DATA C( 5) / 0.00001 58841 55418 80D0/ DATA C( 6) /-0.00000 19078 49593 87D0/ DATA C( 7) / 0.00000 02419 51808 54D0/ DATA C( 8) /-0.00000 00319 33412 74D0/ DATA C( 9) / 0.00000 00043 45450 63D0/ DATA C(10) /-0.00000 00006 05784 80D0/ DATA C(11) / 0.00000 00000 86120 98D0/ DATA C(12) /-0.00000 00000 12443 32D0/ DATA C(13) / 0.00000 00000 01822 56D0/ DATA C(14) /-0.00000 00000 00270 07D0/ DATA C(15) / 0.00000 00000 00040 42D0/ DATA C(16) /-0.00000 00000 00006 10D0/ DATA C(17) / 0.00000 00000 00000 93D0/ DATA C(18) /-0.00000 00000 00000 14D0/ DATA C(19) /+0.00000 00000 00000 02D0/ IF(X .EQ. 1) THEN H=PI6 ELSEIF(X .EQ. -1) THEN H=-PI12 ELSE T=-X IF(T .LE. -2) THEN Y=-1/(1+T) S=1 A=-PI3+HF*(LOG(-T)**2-LOG(1+1/T)**2) ELSEIF(T .LT. -1) THEN Y=-1-T S=-1 A=LOG(-T) A=-PI6+A*(A+LOG(1+1/T)) ELSE IF(T .LE. -HF) THEN Y=-(1+T)/T S=1 A=LOG(-T) A=-PI6+A*(-HF*A+LOG(1+T)) ELSE IF(T .LT. 0) THEN Y=-T/(1+T) S=-1 A=HF*LOG(1+T)**2 ELSE IF(T .LE. 1) THEN Y=T S=1 A=0 ELSE Y=1/T S=-1 A=PI6+HF*LOG(T)**2 ENDIF H=Y+Y-1 ALFA=H+H B1=0 B2=0 DO 1 I = 19,0,-1 B0=C(I)+ALFA*B1-B2 B2=B1 1 B1=B0 H=-(S*(B0-H*B2)+A) ENDIF LI2=H RETURN END FUNCTION * * =================================================================av== END MODULE XCLNS3P