MODULE XCLNS2E CONTAINS * * ..File: xclns2e.f FL_NS (even-N) * * * ..The 1-loop and 2-loop MS(bar) non-singlet coefficient functions * for the structure function F_L in e.m. DIS at mu_r = mu_f = Q. * The expansion parameter is alpha_s/(4 pi). * * ..The code uses the package of Gehrmann and Remiddi for the harmonic * polylogarithms published in hep-ph/0107173 = CPC 141 (2001) 296. * * ..The two-loop results were first derived in * J. Sanchez Guillen et al, Nucl. Phys. B353 (1991) 337 * * ===================================================================== * * * ..The one-loop coefficient function * FUNCTION XLNS1A (X, NF) IMPLICIT REAL*8 (A - Z) INTEGER NF * CF = 4./3.D0 XLNS1A = 4.* CF * X * RETURN END FUNCTION * * --------------------------------------------------------------------- * * * ..The two-loop coefficient function * FUNCTION XLNP2A (X, NF) * IMPLICIT REAL*8 (A - Z) COMPLEX*16 HC1, HC2, HC3, HC4, HC5 INTEGER NF, NF2, N1, N2, NW PARAMETER ( N1 = -1, N2 = 1, NW = 3 ) DIMENSION HC1(N1:N2),HC2(N1:N2,N1:N2),HC3(N1:N2,N1:N2,N1:N2), , HC4(N1:N2,N1:N2,N1:N2,N1:N2) DIMENSION HR1(N1:N2),HR2(N1:N2,N1:N2),HR3(N1:N2,N1:N2,N1:N2), , HR4(N1:N2,N1:N2,N1:N2,N1:N2) DIMENSION HI1(N1:N2),HI2(N1:N2,N1:N2),HI3(N1:N2,N1:N2,N1:N2), , HI4(N1:N2,N1:N2,N1:N2,N1:N2) PARAMETER ( Z2 = 1.6449 34066 84822 64365 D0, , Z3 = 1.2020 56903 15959 42854 D0 ) * * ...Colour factors and abbreviations * CF = 4./3.D0 CA = 3.D0 * DX = 1.D0/X * * ...Harmonic polylogs (HPLs) up to weight NW=3 by Gehrmann and Remiddi * CALL HPLOG (X, NW, HC1,HC2,HC3,HC4, HR1,HR2,HR3,HR4, , HI1,HI2,HI3,HI4, N1, N2) * * ...The coefficient function in terms of the HPLs * clqq2 = & + cf*ca * ( - 196.D0/15.D0 + 3458.D0/45.D0*x - 48.D0/5.D0*x**2 & - 32.D0/5.D0*dx - 32.D0*z3*x - 16.D0*z2*x + 48.D0/5.D0*z2* & x**3 + 16.D0*Hr1(-1)*z2*x - 16.D0/5.D0*Hr1(0) + 752.D0/15.D0* & Hr1(0)*x - 48.D0/5.D0*Hr1(0)*x**2 + 32.D0/5.D0*Hr1(0)*dx + 92. & D0/3.D0*Hr1(1)*x - 16.D0*Hr1(1)*z2*x - 32.D0*Hr2(-1,0) - 16.D0 & *Hr2(-1,0)*x + 48.D0/5.D0*Hr2(-1,0)*x**3 - 32.D0/5.D0*Hr2(-1, & 0)*dx**2 + 16.D0*Hr2(0,0)*x - 48.D0/5.D0*Hr2(0,0)*x**3 + 32.D0 & *Hr3(-1,-1,0)*x - 16.D0*Hr3(-1,0,0)*x + 16.D0*Hr3(1,0,0)*x ) clqq2 = cLqq2 + cf**2 * ( 44.D0/5.D0 - 374.D0/5.D0*x + 96.D0/5.D0 & *x**2 + 64.D0/5.D0*dx + 64.D0*z3*x + 8.D0*z2*x - 96.D0/5.D0* & z2*x**3 - 32.D0*Hr1(-1)*z2*x - 8.D0/5.D0*Hr1(0) - 208.D0/5.D0 & *Hr1(0)*x + 96.D0/5.D0*Hr1(0)*x**2 - 64.D0/5.D0*Hr1(0)*dx - 8. & D0*Hr1(1) - 28.D0*Hr1(1)*x + 32.D0*Hr1(1)*z2*x + 64.D0*Hr2(-1 & ,0) + 32.D0*Hr2(-1,0)*x - 96.D0/5.D0*Hr2(-1,0)*x**3 + 64.D0/5. & D0*Hr2(-1,0)*dx**2 - 16.D0*Hr2(0,0)*x + 96.D0/5.D0*Hr2(0,0)* & x**3 + 24.D0*Hr2(0,1)*x + 16.D0*Hr2(1,0)*x + 16.D0*Hr2(1,1)*x & - 64.D0*Hr3(-1,-1,0)*x + 32.D0*Hr3(-1,0,0)*x - 32.D0*Hr3(1,0 & ,0)*x ) clqq2 = cLqq2 + nf*cf * ( 8.D0/3.D0 - 100.D0/9.D0*x - 16.D0/3.D0* & Hr1(0)*x - 8.D0/3.D0*Hr1(1)*x ) * XLNP2A = CLQQ2 * RETURN END FUNCTION * * =================================================================av== END MODULE XCLNS2E