MODULE XC3NS3P USE XC2NS3P CONTAINS * * ..File: xc3ns3p.f F3^NU+NU(BAR) * * * ..Parametrization of the 3-loop MS(bar) non-singlet coefficient * functions for the structure function F_2 in electromagnetic DIS. * at mu_r = mu_f = Q. The expansion parameter is alpha_s/(4 pi). * * ..The distributions (in the mathematical sense) are given as in eq. * (B.26) of Floratos, Kounnas, Lacaze: Nucl. Phys. B192 (1981) 417. * The name-endings A, B, and C of the functions below correspond to * the kernel superscripts [2], [3], and [1] in that equation. * * ..The relative accuracy of these parametrizations, as well as of * the convolution results, is one part in thousand or better. * * ..Reference: A. Vogt, J. Vermaseren and S. Moch, * hep-ph/0608307 = NP B (Proc. Suppl.) 160 (2006) 44 * * * ===================================================================== * * * ..The regular piece. The rational end-point coefficients are exact, * the rest has been fitted for x between 10^-6 and 1 - 10^-6. * FUNCTION C3NM3A (Y, DL, NF, V) IMPLICIT REAL*8 (A - Z) INTEGER NF INTEGER V * FL02 = 1.D0 * if V==0 then return the NS minus coefficient instead of the NS valence IF (V.eq.0) FL02 = 0.D0 * Y1 = Y1VAL(Y, DL) DL1 = DL1VAL(Y, DL) D27 = 1./27.D0 D243 = 1./243.D0 * C3NM3A = , - 1853. - 5709.* Y + Y*Y1* (5600. - 1432.* Y) , - 536./405.D0* DL**5 - 4036./81.D0* DL**4 , - 496.95 * DL**3 - 1488. * DL**2 - 293.3 * DL , - 512.*D27 * DL1**5 + 8896.*D27 * DL1**4 , - 1396.* DL1**3 + 3990.* DL1**2 + 14363.* DL1 , - 0.463 * Y*DL**6 - DL*DL1 * (4007. + 1312.*DL) , + NF * ( 516.1 - 465.2 * Y + Y*Y1* (635.3 + 310.4 * Y) , + 304./81.D0 * DL**4 + 48512./729.D0 * DL**3 , + 305.32 * DL**2 + 366.9 * DL - 1.200 * Y*DL**4 , - 640./81.D0 * DL1**4 + 32576./243.* DL1**3 , - 660.7 * DL1**2 + 959.1 * DL1 + 31.95 * (1.-Y)*DL1**4 , + DL*DL1 * (1496. + 270.1 * DL - 1191.* DL1) ) , + NF**2 * ( 11.32 + 51.94 * Y - Y*Y1* (44.52 + 11.05 * Y) , - 368.* D243* DL**3 - 2848./243.D0* DL**2 - 16.00 * DL , - 64./81.D0* DL1**3 + 992./81.D0* DL1**2 - 49.65 * DL1 , - DL*DL1 * ( 39.99 + 5.103 * DL - 16.30 * DL1) , + 0.0647 * Y*DL**4 ) , + FL02*NF * ( 48.79 - (242.4 - 150.7 * Y ) * Y1 , - 16./27.D0 * DL**5 + 17.26* DL**3 - 113.4 * DL**2 , - 477.0 * DL + 2.147 * DL1**2 - 24.57 * DL1 , + Y*DL * (218.1 + 82.27 * DL**2) , - DL*DL1 * (81.70 + 9.412 * DL1) ) * Y1 * RETURN END FUNCTION * * --------------------------------------------------------------------- * * * ..The exact singular piece (irrational coefficients truncated) * FUNCTION C3NS3B (Y, DL, NF) IMPLICIT REAL*8 (A-Z) INTEGER NF * DL1 = DL1VAL(Y, DL) DM = DMVAL(Y, DL) D81 = 1./81.D0 * C3NS3B = , + 1536.*D81 * DL1**5 - 16320.* D81 * DL1**4 , + 5.01099E+2 * DL1**3 + 1.17154E+3 * DL1**2 , - 7.32845E+3 * DL1 + 4.44276E+3 , + NF * ( 640.* D81 * DL1**4 - 6592.* D81 * DL1**3 , + 220.573 * DL1**2 + 294.906 * DL1 - 729.359 ) , + NF**2 * ( 64.* D81 * DL1**3 - 464.* D81 * DL1**2 , + 7.67505 * DL1 + 1.00830 ) * C3NS3B = DM * C3NS3B * RETURN END FUNCTION * * --------------------------------------------------------------------- * * * ..The 'local' piece. The coefficients of delta(1-x) have been * slightly shifted with respect to their (truncated) exact values. * FUNCTION C3NM3C (Y, NF) IMPLICIT REAL*8 (A - Z) INTEGER NF * DL1 = LOG (1.D0-Y) D81 = 1./81.D0 D3 = 1./3.D0 * C3NM3C = , + 256.*D81 * DL1**6 - 3264.*D81 * DL1**5 , + 1.252745E+2 * DL1**4 + 3.905133E+2 * DL1**3 , - 3.664225E+3 * DL1**2 + 4.44276E+3 * DL1 , - 9195.48 + 22.80 , + NF * ( 128.* D81 * DL1**5 - 1648.* D81 * DL1**4 , + 220.573 * D3 * DL1**3 + 147.453 * DL1**2 , - 729.359 * DL1 + 2575.074 + 0.386 ) , + NF**2 * ( 16.* D81 * DL1**4 - 464.* D81*D3 * DL1**3 , + 7.67505 * 5.D-1 * DL1**2 + 1.0083 * DL1 - 103.2521 , - 0.0081 ) * RETURN END FUNCTION * * =================================================================av== END MODULE XC3NS3P