#!/usr/bin/env python3 # #---------------------------------------------------------------------- # $Id$ # # Copyright (c) 2018-, Frederic A. Dreyer, Keith Hamilton, Alexander Karlberg, # Gavin P. Salam, Ludovic Scyboz, Gregory Soyez, Rob Verheyen # #---------------------------------------------------------------------- # This file is part of FastJet contrib. # # It is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the # Free Software Foundation; either version 2 of the License, or (at # your option) any later version. # # It is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public # License for more details. # # You should have received a copy of the GNU General Public License # along with this code. If not, see . #---------------------------------------------------------------------- # # Load a sample file and plot it. # # Usage: # python3 example.py [--file filename] [--bkg file_bkg] # [--njet njet] [--npxl npixels] # import read_lund_json as lund #from import LundImage from matplotlib.colors import LogNorm import numpy as np import matplotlib.pyplot as plt import argparse parser = argparse.ArgumentParser(description='Plot lund images') parser.add_argument('--file', action = 'store', default = 'jets.json') parser.add_argument('--njet', type = int, default = 2, help='Maximum number of jets to analyse') parser.add_argument('--npxl', type = int, default = 25, help="Number of pixels in each dimension of the image") args = parser.parse_args() # set up the reader and get array from file xval = [0.0, 3.0] yval = [-3.0, 5.0] # start by creating a reader for the json file produced by example.cc # (one json entry per line, correspond to one jet per json entry) reader = lund.Reader(args.file, args.njet) # Then examine the jets it contains print ("Contents of the file", args.file) for jet in reader: # jet is an array of declusterings. # The jet's pt can be obtained by looking at the first declustering (jet[0]) # and extracting the subjet-pair pt ("p_pt") print(" Jet with pt = {:6.1f} GeV with {:3d} primary Lund-plane declusterings".format(jet[0]["p_pt"], len(jet))) print() # Reset the reader to the start and use it with a helper # class to extract an image for each jet reader.reset() image_generator = lund.LundImage(reader, args.njet, args.npxl, xval, yval) images = image_generator.values() # Get the average of the images print("Now creating average lund image from the {} jets".format(len(images))) avg_img = np.average(images,axis=0) # Plot the result fig=plt.figure(figsize=(6, 4.5)) plt.title('Averaged Lund image') plt.xlabel('$\ln(R / \Delta)$') plt.ylabel('$\ln(k_t / \mathrm{GeV})$') plt.imshow(avg_img.transpose(), origin='lower', aspect='auto', extent=xval+yval, cmap=plt.get_cmap('BuPu')) plt.colorbar() print("Close the viewer window to exit") plt.show()