// Example showing advanced usage of JetsWithoutJets classes. // Please see example_basic_usage for usage of basic classes first. // // Compile it with "make example_advanced_usage" and run it with // // ./example_advanced_usage < ../data/single-event.dat // // Copyright (c) 2013 // Daniele Bertolini and Jesse Thaler // // $Id$ //---------------------------------------------------------------------- // This file is part of FastJet contrib. // // It is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the // Free Software Foundation; either version 2 of the License, or (at // your option) any later version. // // It is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this code. If not, see . //---------------------------------------------------------------------- #include #include #include #include #include "fastjet/PseudoJet.hh" #include "fastjet/ClusterSequence.hh" #include "fastjet/JetDefinition.hh" #include "fastjet/tools/Filter.hh" #include "JetsWithoutJets.hh" // In external code, this should be fastjet/contrib/JetsWithoutJets.hh using namespace std; using namespace fastjet; using namespace fastjet::jwj; // forward declaration to make things clearer void read_event(vector &event); void analyze(const vector & input_particles); //---------------------------------------------------------------------- int main(){ //---------------------------------------------------------- // read in input particles vector event; read_event(event); cout << "#########" << endl; cout << "## Read an event with " << event.size() << " particles" << endl; //---------------------------------------------------------- // illustrate how this JetsWithoutJets contrib works analyze(event); return 0; } // read in input particles void read_event(vector &event){ string line; while (getline(cin, line)) { istringstream linestream(line); // take substrings to avoid problems when there are extra "pollution" // characters (e.g. line-feed). if (line.substr(0,4) == "#END") {return;} if (line.substr(0,1) == "#") {continue;} double px,py,pz,E; linestream >> px >> py >> pz >> E; PseudoJet particle(px,py,pz,E); // push event onto back of full_event vector event.push_back(particle); } } // Main code void analyze(const vector & input_particles) { // Jet parameters. double Rjet = 1.0; double pTcut = 200.0; // Subjet parameters. Need for trimming. double Rsub = 0.2; double fcut = 0.05; double ptsubcut = 50.0; // additional ptsubcut for subjet multiplicity ////////// // Multiple pT analysis. ////////// // These use classes derived from JetLikeEventShape_MultiplePtCutValues, where // the full pT information is kept in calculating the event shape. // One can calculate the value of the event shape at a given pT cut, or // one can calculate the inverse function to find the value of the pT cut // needed to return a given value of the event shape. ShapeJetMultiplicity_MultiplePtCutValues Nj_allPt(Rjet); ShapeJetMultiplicity_MultiplePtCutValues Nj_allPt_trim(Rjet,Rsub,fcut); // with trimming Nj_allPt.set_input(input_particles); Nj_allPt_trim.set_input(input_particles); cout << "#########" << endl; cout << "## Example of multiple pT analysis" << endl; cout << "#########" << endl; cout << "Jet parameters: R_jet=" << Rjet << ", pTcut=" << pTcut << " (unless otherwise stated)" <description() << endl; // ideally each even shape should have a description myShapes.at(i)->setUseLocalStorage(false); double valueNoStorage = myShapes.at(i)->result(input_particles); myShapes.at(i)->setUseLocalStorage(true); double valueYesStorage = myShapes.at(i)->result(input_particles); cout << myNames.at(i) << "=" << valueNoStorage << endl; cout << "(Local Storage works? " << (valueNoStorage == valueYesStorage ? "Yes" : "No!!") << ")" << endl; cout << "#" << endl; delete myShapes.at(i); } ////////// // User defined JetLikeEventShape and using EventStorage ////////// // Need to write a measurement function. For example, use FunctionScalarPtSum (already pre-defined) to get the ShapeScalarPt class ShapeScalarPt_new: public JetLikeEventShape { public: ShapeScalarPt_new(double Rjet, double ptcut): JetLikeEventShape(new FunctionScalarPtSum(),Rjet,ptcut) {} ShapeScalarPt_new(double Rjet, double ptcut, double Rsub, double fcut) : JetLikeEventShape(new FunctionScalarPtSum(),Rjet,ptcut,Rsub,fcut) {} ~ShapeScalarPt_new(){} }; ShapeScalarPt_new HT_new(Rjet,pTcut); // Built-in HT ShapeScalarPt HT(Rjet,pTcut); cout << "#########" << endl; cout << "## Example of JetLikeEventShape defined with an external measurement" << endl; cout << "#########" << endl; cout << "HT_new = " << HT_new(input_particles) << endl; cout << "compare to built-in HT = "<< HT(input_particles)<*> myMeasurements; vector myNames1; myMeasurements.push_back( new FunctionUnity() ); myNames1.push_back("Njet"); myMeasurements.push_back( new FunctionScalarPtSum() ); myNames1.push_back("HT"); myMeasurements.push_back( new FunctionScalarPtSumToN(2) ); myNames1.push_back("HT^2"); myMeasurements.push_back( new FunctionInvariantMass() ); myNames1.push_back("SigmaM"); myMeasurements.push_back( new FunctionInvariantMassSquared() ); myNames1.push_back("SigmaM2"); cout << "#########" << endl; cout << "## Example of multiple measurements using a single storage" << endl; cout << "#########" << endl; for(unsigned int i=0; i