// To run this example, use the following command: // // ./example-GHS [nevmax [njetmax]] < ../data/pythia8_Zq_vshort.dat // //---------------------------------------------------------------------- // $Id$ // // Copyright (c) 2025, Rhorry Gauld, Alexander Huss, Giovanni Stagnitto // // based on initial version by Fabrizio Caola, Radoslaw Grabarczyk, // Maxwell Hutt, Gavin P. Salam, Ludovic Scyboz, and Jesse Thaler // //---------------------------------------------------------------------- // This file is part of FastJet contrib. // // It is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the // Free Software Foundation; either version 2 of the License, or (at // your option) any later version. // // It is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this code. If not, see . //---------------------------------------------------------------------- #include #include #include #include "fastjet/PseudoJet.hh" #include "fastjet/contrib/GHSAlgo.hh" using namespace std; using namespace fastjet; using namespace fastjet::contrib; // forward declaration to make things clearer void read_event(vector &event); //---------------------------------------------------------------------- int main(int iargc, char **argv){ // give user control over printout (mainly relevant for make check) // usage: "./example [nevmax [njetmax]] < data/pythia8_Zq_vshort.dat" unsigned int nevmax = 2; unsigned int njetmax = 1; if (iargc > 1) nevmax = stoi(argv[1]); if (iargc > 2) njetmax = stoi(argv[2]); // print banner for FastJet at the start, so it doesn't mix // into the other output ClusterSequence::print_banner(); // we start with a base jet definition (here antikt) double R = 0.4; JetDefinition base_jet_def(antikt_algorithm, R); // enable it to track flavours (default is net flavour) FlavRecombiner flav_recombiner; base_jet_def.set_recombiner(&flav_recombiner); // GHS parameters: double GHS_alpha = 1.0; // < flav-kt distance parameter alpha double GHS_omega = 2.0; // < omega parameter for GHS_Omega (omega = 0 uses DeltaR_ij^2) double ptcut = 15.0; // < overall ptcut cout << "! this analysis considers only b-flavour from input events !" << endl; cout << "base jet definition: " << base_jet_def.description() << endl; cout << "GHS jet definition: " << endl << " alpha = " << GHS_alpha << endl << " omega = " << GHS_omega << endl << " (ptcut = " << ptcut << " GeV)" << endl; // loop over some number of events unsigned int n_events = 10; for (unsigned int iev = 0; iev < n_events && iev < nevmax; iev++) { // read in input particles: see that routine for info // on how to set up the PseudoJets with flavour information vector event; read_event(event); cout << "\n#---------------------------------------------------------------\n"; cout << "# read event " << iev << " with " << event.size() << " particles" << endl; // run the jet clustering with the base jet definition vector base_jets = base_jet_def(event); // run the GHS algorithm: require base jets & a hardness cut that should be chosen to match the fiducial selection vector GHS_jets = run_GHS(base_jets, ptcut, GHS_alpha, GHS_omega, flav_recombiner); // make sure the sizes are the same (after the ptcut) Selector select_pt = SelectorPtMin(ptcut); vector selected_base_jets = select_pt(base_jets); assert(selected_base_jets.size() == GHS_jets.size()); // ---------------------------------------------------- // loop over the two leading jets and print out their properties for (unsigned int ijet = 0; ijet < selected_base_jets.size() && ijet < njetmax; ijet++) { // first print out the original anti-kt jets and the GHS jets const auto & base_jet = selected_base_jets[ijet]; const auto & GHS_jet = GHS_jets [ijet]; cout << endl; cout << "base jet " << ijet << ": "; cout << "pt=" << base_jet.pt() << " rap=" << base_jet.rap() << " phi=" << base_jet.phi(); cout << ", flav = " << FlavHistory::current_flavour_of(base_jet).description() << endl; cout << "GHS jet " << ijet << ": "; cout << "pt=" << GHS_jet.pt() << " rap=" << GHS_jet.rap() << " phi=" << GHS_jet.phi(); cout << ", flav = " << FlavHistory::current_flavour_of(GHS_jet).description() << endl; // for the first event, print out the jet constituents' pt and initial and final flavours cout << "constituents:" << endl; for (const auto & c: sorted_by_pt(base_jet.constituents())) { cout << " pt = " << setw(10) << c.pt(); cout << ", orig. flav = " << setw(8) << FlavHistory::initial_flavour_of(c).description(); cout << ", final flav = " << setw(8) << FlavHistory::current_flavour_of(c).description(); cout << endl; } } } return 0; } // read in input particles and set up PseudoJets with flavour information void read_event(vector &event){ // read in the input particles and their PDG IDs string line; double px, py, pz, E; int pdg_id; event.resize(0); while(getline(cin,line)) { if(line[0] == '#') continue; istringstream iss(line); iss >> px >> py >> pz >> E >> pdg_id; // create a fastjet::PseudoJet with these components and put it onto // back of the input_particles vector PseudoJet p(px,py,pz,E); // assign information about flavour (will be deleted automatically) FlavInfo flav_info_init(pdg_id); // we take only b-quarks flav_info_init.reset_all_but_flav(5); // need to cast to const for constructor p.set_user_info(new FlavHistory(const_cast(flav_info_init))); event.push_back(p); if (cin.peek() == '\n' || cin.peek() == EOF) { getline(cin,line); break; } } }